当前位置:首页 > news > RIT researcher creates 3D printed bio-polymer structure to help body heal itself

RIT researcher creates 3D printed bio-polymer structure to help body heal itself

3D printing are providing a way for an RIT researcher to create platforms to help regenerate human tissue that allows the body heal itself more effectively. Iris Rivero, an engineering professor at Rochester Institute of Technology, has found that compatible combinations of polymers and biomaterials can be successfully used to fabricate “scaffolds,” 3D printed structures that can be used to grow new and healthy tissue. This research moves a step closer to the possibility of “smart,” 3D-printed bone, skin and cartilage tissue replacement.

Iris Rivero (left), professor of industrial and systems engineering, evaluates a 3D-printed bio-polymer structure for tissue engineering with engineering doctoral student, Srikanthan Ramesh. Image credit: Michelle Cometa

“Sometimes organs in the body, due to the magnitude of damage or compromised immunology, are not able to repair themselves, and we have to come up with external alternatives to help them replace themselves,” said Rivero. “What we are seeing today is bioprinting as a technology capable of generating customized platforms that can trigger the necessary signals needed to assist the body to repair itself.”

In tissue engineering bone, researchers add ceramic particles to biopolymers to resemble bone structure and strength. These unique combinations of biomaterials are devised for scaffold platforms and generated through controlling their processing and mixture.

“The idea is, that once we design a tissue support structure, we then create an artificial environment based on a unique biocomposite material that closely resembles tissue degradation in the body,” said Rivero, who also serves as department head of industrial and systems engineering in RIT’s Kate Gleason College of Engineering. “For skin regeneration or wound healing, you determine a particular scaffold structure to encourage skin cell proliferation. With different shapes and degrees of porosity, for example, that can serve as a smart wound dressing. In another application, when attempting to join two bones, a customized scaffold or structure can be inserted to assist in bone regeneration. To stimulate bone regeneration the scaffold can include cells that make up bone, osteoblast cells, for example and be able to accelerate the rate that tissue is being formed.”

Srikanthan Ramesh, an engineering doctoral student on Rivero’s research team, agreed, adding, “The materials we are using have similarities to collagen, a protein in the body. We use a hydrolyzed form of that protein, a gelatin. It is biocompatible – your body is already used to it – and it will not be rejected. But that is also part of the challenge we are trying to address: How are you going to make something that the body will not reject?”

Looking far into the future, Rivero and Ramesh continue to evaluate different methods to achieve cell viability on the scaffolds. Rivero explains that this work could reduce the need for human organ donations in the future - “The impact that this has is to be able to depend less on organ donations and being able to satisfy that need ourselves,” she said.


除特别注明外,本站所有文章均为china 3dprinter and 3dprinting news原创,转载请注明出处来自http://en.3ddayin.net/?id=2011

发表评论

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。