当前位置:首页 > news > 3D Printing – Shared Spaces R&D Tax Credit 3D Printer Opportunities

3D Printing – Shared Spaces R&D Tax Credit 3D Printer Opportunities

In December, the University of Glasgow received £2.8 million from Find a Better Way, a charity set up to help survivors of landmine blasts. The funding was granted to the university to develop a method of 3D printing bone that involves coating plastic scaffolds with stem cells and a growth factor called BMP-2, and placing them into a device called a Nanokick bioreactor, invented by a professor at the school. The bioreactor shakes the scaffold at a rate that stimulates bone tissue to grow faster.

Although human trials of the 3D printed bone won’t be for several years, the university did get a chance to test it out recently – on a dog named Eva. The two-year-old Munsterlander was hit by a car, badly injuring her right foreleg and leaving a 2cm gap in the bone. It looked like her leg would have to be amputated – except that at Glasgow University’s veterinary hospital, where Eva was taken, veterinarian William Marshall was familiar with the technique that Professors Matt Dalby and Manuel Salmeron-Sanchez were developing. He reached out to the team, which agreed to try a modified version of the technique on Eva’s leg.


[Image: STV]

A mixture of bone chips with BMP-2 and poly(ethyl acrylate), or PEA, was placed into the gap in Eva’s leg. Seven weeks later, the bone has regrown.


“This is an exciting development,” said Professor Salmeron-Sanchez. “During research and development, the use of PEA and BMP-2 to grow new bone tissue has looked very promising, but I was not expecting the treatment to be used to help a patient for several more years. We are delighted to have had the chance to help save Eva’s leg from amputation. If I’m honest, we were not at all sure the treatment would work in such a complex infected fracture. It’s been a very rewarding experience for everyone involved.”

The Nanokick bioreactor

The success of the operation bodes well for the humans who will eventually benefit from the treatment.

“We are absolutely thrilled with Eva’s recovery,” said Eva’s owner, Fiona Kirkland. “When we heard about an experimental treatment that might help her, we had no idea it was connected to such an important project. It is amazing to think that the treatment used to heal Eva’s leg will help researchers one day repair the bones of landmine blast survivors.”

Although it will be a while, still, before the technique is tested on humans, the fact that it was able to repair such a complex injury means that there’s hope for survivors who have encountered landmines, millions of which remain in place around the world.

In other hopeful bioprinting news, Kentucky software company Advanced Solutions has developed a new kind of bioprinter. The patent-pending BioAssemblyBot operates on a six-axis robotic arm, and the company believes that it eventually could lead to 3D printed organs.

The BioAssemblyBot is connected to Advanced Solutions’ Tissue Structure Information Modeling (TSIM) software, which enables the user to create and print detailed 3D models, and is capable of 3D printing cell systems and 3D assays, experimental tissue models and microenvironments, organ models, microfluidic platforms, implant systems and more. It features as many as eight interchangeable tools that deposit bioink, pick and place, heat and cool, etc. The machine has a 250 x 300 x 250 mm 3D printing build envelope.

The system allows users to “Fail Fast,” as the company calls it, or to identify and work through issues quickly. They’re still some distance from being able to 3D print a working, transplantable human organ, and Advanced Solutions President and CEO Michael Golway states that the company could benefit from failing faster in order to make faster progress. The biggest challenge is in the development of bioinks – but progress is being made.

“We can print liver cells in a structure the size of a U.S. quarter and combine it with our vascularization technology in a 3D structure to get results that begin to mimic a functioning liver,” Golway told CNBC. “We’re using raw material from the patient to actually create 3D structures outside the body. We happen to think the vascularization piece, i.e. the ability to get blood flow to the tissues, will be a really critical part and a foundational step to the long term advancements that we’ll see in 3D printed organs.”

In addition to liver tissue, the company and its customers are also 3D printing mimics for lungs, hearts, kidneys, pancreases, bones, and skin.

“We believe in the next five years, you’ll start to see movement from the research side to the clinical side, where we’re starting to develop functional solutions for the patient,” said Golway. “I can only expect that there will be a lot of debate and discussion around the ethics, and I have great confidence that once we go to the clinical side, it will be a safe application for patients.”


除特别注明外,本站所有文章均为china 3dprinter and 3dprinting news原创,转载请注明出处来自http://en.3ddayin.net/article/1693.html

发表评论

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。